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A general way to classify stochastic chaos is presented and applied to population dynamics models. A
stochastic dynamical theory is used to develop an algorithmic tool to measure the transport across basin
boundaries and predict the most probable regions of transport created by noise. The results of this tool
are illustrated on a model of virus spread in a large population, where transport regions reveal how noise
completes the necessary manifold intersections for the creation of emerging stochastic chaos.
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In contrast to the notion that noise in physical systems
dominated by determinism has small effects, recent re-
search has demonstrated otherwise. Specifically, noise in
deterministic dynamical systems plays a prominent role
in global behavior due to large-scale effects governed by
transport in phase space. Examples of such behavior ap-
pear as inducing order in spatiotemporal systems [1], cre-
ating phase transitions in wave fronts [2], and excitation
of chaoslike structures in large population models, such as
lasers [3] and epidemics [4]. These few examples illus-
trate the general observation that noise may indeed cause
a global change in real dynamical systems, thus making it
clear that stochastic effects play a definitive role in the dy-
namics and must be accounted for in our models and our
analysis of them. One particular problem is the identifica-
tion of the cause of qualitatively new emergent dynamics
that are not observable in deterministic systems, such as
stochastic chaos [4].

In this Letter, we present a general tool designed to pre-
dict the global effect of noise on a model of virus spread in
a large population. We consider only regions where there
is no topological manifold structure for the existence of a
chaotic attractor or saddle for noise to excite directly, as
in [5]. Our algorithm is designed for the general case of a
deterministic dynamical system with several stable basins,
called a “multistable” system, in which there is a mixing
of states as noise amplitude increases. Since it is not suf-
ficient to compute only Lyapunov exponents to detect or
define stochastic chaos [6], we compute transport of a sto-
chastic flux from one basin to another [7,8]. Weighting this
flux by the probability density function (PDF) pinpoints re-
gions in phase space that have the greatest leakage into an-
other basin and strongest transport created by noise. This
information, combined with the topology of the system,
presents a more complete picture of the dynamics, accu-
rately predicting a stochastic bifurcation to new dynamics,
such as stochastic chaos. Specifically, we show that sto-
chastic transport correlates quite strongly with the obser-
vation that noise completes the correct manifold topology
for the existence of stochastic chaos. As such, it also pro-
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duces the correct statistics to compute both space and time
analogs of stochastic Lyapunov exponents.

Some other benefits of our tool are that the dimension
of the phase space and the manifold structure are relatively
not involved in the stochastic transport analysis. This is
in contrast to the way geometric and manifold variation
methods, such as the Melnikov method [9], are modified
to account for stochastic transport [10]. For these methods,
one needs a system to perturb from. Our technique has the
advantage that no such “simple” reference system is neces-
sary, as in many population dynamics models. Moreover,
our tool is not limited to white noise. It allows for any type
of noise perturbation since the distribution of the stochas-
tic perturbations is explicitly defined in the calculation.

We start with a general description of how the tool
works. Consider the stochastically perturbed dynamical
system

Fn : M ! M, x � F�x� 1 h , (1)

with the probability density function n�x� and a random
variable h applied once each iteration. The random part,
h is assumed to be independent of state, x, independent
identically distributed, which we tacitly presume to be
relatively small, so that the deterministic part, F, has pri-
mary influence. Noise with a normal distribution is rep-
resented by n�x� �

1
p

2ps2 exp�2kxk2�2s2�, with mean
x � 0 and standard deviation s as the adjustable parame-
ter. The stochastic Frobenius-Perron operator is

PF �r�x�� �
1

p
2ps2

Z
M

e2k�x2F�y��k2�2s2

r�y� dy , (2)

which is the form for Eq. (1), a discrete time system with
constantly applied stochastic perturbation [11].

Next, we project the infinite-dimensional linear
space L1�M�, with discretely indexed basis functions
�fi�x��`

i�1 , L1�M� onto a finite-dimensional linear sub-
space generated by a subset of the basis functions [12],
DN � span��fi�x��N

i�1�, such that fi [ L1�M� ;i. This
projection, p : L1�M� ! DN is realized optimally by the
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“Galerkin” method, in terms of the inner product, which
we choose to be integration, � f, g� �

R
M f�x�g�x� dx,

;f, g [ L2�M�. Specifically, the infinite-dimensional
matrix is approximated by the N 3 N matrix,

Ai,j � �PFs
�fj�, fi� �

Z
M

PFs
�fj�x��fi�x� dx , (3)

for 1 # i, j # N . One approximates r�x� by the finite
sum of basis functions, r�x� 	

PN
i�1 cifi�x�. Choose the

basis functions to be a family of characteristic functions,

fi�x� � xBi �x� �

"
1 x [ Bi

0 else

∏
, (4)

a nested refinement of boxes �Bi� covering M. Therefore, a
Galerkin matrix entry, the Ai,j value, represents how mass
flows from cell Bi to cell Bj, with column sums of one
if the space is compact. We wish the A matrix repre-
sentation to lay plain the regions of transport which leak
measure between neighboring basins, across what were
transport barriers in the absence of noise. One problem
with grid approximations of the phase space is that a typ-
ical (say, raster scanned) ordering of the phase space will
tend to have those regions that should be dynamically
grouped (those in the same basin) scattered seemingly hap-
hazardly in the indexing. Thus, there is a need for rein-
dexing. Our algorithm in brief is to (i) identify vertices
corresponding to each basin of attraction in the zero-noise
case. (ii) Reindex the corresponding matrix representa-
tion k1, k2, . . . , kN by row/column exchange elementary
permutation operations. Further reindex each vertex ac-
cording to the number of steps to the center of the corre-
sponding basin. (iii) Gradually turn up the noise amplitude
while maintaining the zero-noise-determined vertex order,
which was previously computed and dynamically coherent.
(iv) Identify vertices from which measure leaks, and find
their position in the original phase space.

Note that, with no noise, the matrix from a multistable
system will completely reduce to a block-diagonal canoni-
cal form after reindexing. Adding noise creates nonzero
entries in the zero blocks, which correspond to leakage.

There are other quantities which can be easily computed,
given the Galerkin matrix A. The dominant eigenvector of
A approximates the invariant PDF of the dynamical system.
Such a spatial integration, which is essentially an Ulam
method [13], is the straightforward alternative to the direct
but often less efficient method of time verages involving
accumulating histograms over long orbits [9]. Given (ap-
proximately) the invariant PDF, we can approximate the
Lyapunov exponents, also by direct spatial integration. Let
r�x� be the PDF and �lk�x�� be the eigenvalues of the
Jacobian evaluated over one time period, starting at an ini-
tial condition x. Lyapunov exponents can be computed by
spatial averaging against the invariant PDF, which our nu-
merical experiments suggest perfect agreement with time
average computation
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Lk �
Z

M
ln klk�x�kr�x� dx . (5)

Note that the eigenvalues �lk�x�� of F�x�, the determinis-
tic part of Eq. (1), are independent of the properties of the
stochastic perturbations h. Since the PDF changes with
the standard deviation of noise, so do the Lyapunov ex-
ponents, but the calculation of Eq. (5) remains straightfor-
ward since �lk�x�� remains fixed. We call the measurement
of a positive Lyapunov exponent an indicator of stochastic
chaos. This condition is necessary but not sufficient, and
the apparent geometry of the stable and unstable manifolds
under the influence of noise is another strong indicator of
chaoslike behavior.

Given a region, it is possible to define mass flux (or sim-
ply flux) in and out of the region, across the boundary [14].
To approximate flux, say, for cell i in Basin 1, we calculate
the absolute sum of all columns j of Ai,j corresponding to
Basin 2. The flux for each ith region can be weighted to
form masked transfer matrices. Choosing an initially uni-
form density, we can find stochastic area flux. Using the
PDF weighting corresponds to the joint probability that a
trajectory visits a region by the probability of the trajec-
tory escaping from that region. We call this the PDF flux,
which pinpoints regions in phase space that have the great-
est leakage into another basin.

To illustrate the methodology described above, we con-
sider a model used to describe the dynamics of virus spread
in a large population. In [4] it was shown that, when noise
with a sufficiently large standard deviation is added, the
behavior of the modified SI (MSI) model [15,16],

S0�t� � m 2 mS�t� 2 b�t�I�t�S�t� ,

I 0�t� �

µ
a

m 1 g

∂
b�t�I�t�S�t� 2 �m 1 a�I�t� ,

b�t� � b0�1 1 d cos2pt� ,

(6)

was transformed from regular, periodic cycles to something
completely different, which we call stochastic chaos. In
the deterministic case, with parameter values at m � 0.02,
a � 1�0.0279, g � 100, b0 � 1575, and d � 0.095,
there exist two stable periodic orbits, two unstable peri-
odic orbits, and a partially formed heteroclinic orbit. The
newly developed a tool in this Letter pinpoints the flux
between basins as noise is added. Multiplying these rates
by the probability density function results in the measure
of where a trajectory is most likely to escape to another
basin. We find that the highest escape rates occurs exactly
where we previously conjectured, at the near heteroclinic
tangencies, thus creating a chaoslike orbit.

Without noise, trajectories starting in the neighbor-
hood of the stable period-two or period-three orbits
simply converge to one of these two attractors. Since
Eq. (6) is driven by a time-periodic function b�t�, and
both S and I are fractions of the population, we can
integrate to a stroboscopic map between unit boxes,
234101-2
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FIG. 1. The PDF of the MSI model for the standard devia-
tion s � 0.03 calculated as the dominant eigenvector of the
Galerkin matrix.

F�0, 1�2 ! �0, 1�2. In keeping with the assumed form of
Eq. (1), a discrete time system with constantly applied
stochastic perturbation, we add Gaussian noise directly
to the population rate equations, discretely at each strobe
of the map. We solve the deterministic part of the map
F by a numerical ordinary differential equation solver
of our choice to find the solution during the time the
trajectory is off the Poincaré section, and then we add
Gaussian noise of mean zero, and standard deviation s

FIG. 2. The sorted Galerkin matrix for the standard deviation
s � 0.03. The grid points in the period-two basin are sorted to
the left, and the period-three points are on the right, divided by
the black line. The top left and the bottom right blocks represent
the dynamics within the basins, while the bottom left and top
right represent the leakage from one basin to another.
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on the section. Continuously added noise must be
accounted for by a Langevin equation, with a correspond-
ing Fokker-Planck–type equation, which continuously
evolves in time initial density profiles [11]. We add
noise discretely on the stroboscopic section, in this case
using the assumed Gaussian form, corresponding to a
continuously added noise of another distribution [17].

We now propose the mechanism behind the noise-
induced transport of the MSI model by applying our
above-described tools, essentially as a black box. Fol-
lowing the algorithm requires little special consideration
for our specific system. Once we have raster scanned an
index to cover the attractor by a coarse grid, the resulting
Galerkin matrix approximation of the Frobenius-Perron
operator is essentially dimension independent, with no
memory of the phase space from which it was formed.

In Fig. 1 for s � 0.03, we see the invariant density
or PDF of the MSI model. This picture is calculated as

FIG. 3 (color). The area flux (top) and PDF flux (bottom) over
the phase space for the period-two basin (left). The periodic
orbits are indicated by the large colored dots. These graphs
show the regions where trajectories escape to the period-three
basin. The colors indicate the relative rates varying from the
greatest (red) to the least (blue). Notice that the greatest flux
happens along the basin boundaries.
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FIG. 4. The Lyapunov exponents as a function of the stan-
dard deviation �s� found by evaluating Eq. (5). The maximum
Lyapunov exponent crosses zero near s � 0.02, indicating the
onset of stochastic chaos.

the dominant eigenvector of the corresponding Galerkin
matrix. The essential feature is that, when s � 0, the two
main density spikes are at the dynamic centers of each re-
spective basin. Initially, as s increases, the density be-
comes less diffusely distributed around the stable fixed
points, due to the predominantly small stochastic diffusion
added to the deterministic dynamics. There persist two
stable fixed points and two distinct basins. As we continue
to increase s, a crossover effect occurs near s � 0.02,
after which the density mass becomes mixed throughout a
larger region and predominantly mixed between the origi-
nally separate basins.

In Fig. 2, we see a sorted matrix for s � 0.03. The
bistable system completely reduces to a canonical two-
block diagonal form when s � 0. By using this rein-
dexing instead of the original spatial coordinates, we see
clearly the cause of the density that leaks between the for-
merly separate basins: there is a loss of reducibility of
the corresponding (here approximated) operator. With the
measurement of PDF flux, we can find the locations with
the most transport. In Fig. 3, we show both the area and
PDF fluxes for leakage from the period-two to period-three
basin when s � 0.03. We see “pretangency” mixing: the
PDF flux reveals that the greatest transport occurs where
the unstable manifold of the period-one saddle is closest
to the stable manifold of the period-three saddle, thus es-
sentially completing the heteroclinic tangle. Checking the
Lyapunov exponents, L1 � 0.1294, L2 � 20.7658, con-
firms the noise-induced, or stochastic, chaoslike behavior.
Figure 4, a graph of the Lyapunov exponents as a function
of the standard deviation, indicates the onset of stochas-
tic chaos near s � 0.02. Note that there is good agree-
ment between the spatial integration-based computation in
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Fig. 4 and a similar graph based on time averaging and
histograms found in [4].

In conclusion, we have described a new tool that
computes stochastic transport in a population dynamics
model without necessarily requiring the existence of a
chaotic repeller. The tool uses a Galerkin projection of the
Frobenius-Perron operator, which describes the mass flow
from cell to cell. This allows us to determine the mass flux
across basin boundaries, the probability density function,
and the Lyapunov exponents using spatial information
and as an alternative to time averaging. This information,
combined with the topology of the system, accurately
predicts the stochastic bifurcation to new dynamics,
pinpointing the changes caused by the addition of noise as
illustrated by the noise-induced chaos in the MSI model.
The method is generic to any dynamical system with any
type of stochastic perturbations, making it a powerful tool
to predict the unexpected effects of noise.
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