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Abstract

We classify dynamical systems according to the group of diffeomorphisms to
which they belong, with application to geometric integrators for ODEs. This
point of view unifies symplectic, Lie group, and volume-, integral-, and symmetry-
preserving integrators. We review the Cartan classification of the primitive
infinite-dimensional Lie pseudogroups (and hence of dynamical systems), and
select the conformal pseudogroups for further study, i.e., those that contract
volume or a symplectic structure at a constant rate. Their special properties are
illustrated analytically (by a study of their behaviour with respect to symme-
tries) and numerically (by a geometric calculation of Lyapunov exponents). We
also briefly discuss the nonprimitive pseudogroups.

1 Introduction

It is possible to make a primary classification of discrete-time dynamical systems1 into
three categories of increasing specificity[21]:

1. those which lie in a semigroup (for example, the set of all maps ϕ : M → M ,
where M is the phase space);

2. those which lie in a symmetric space (for example, the diffeomorphisms closed
under the composition ϕψ−1ϕ, such as maps with time-reversal symmetry); and

3. those which lie in a group (for example, the group of all diffeomorphisms of
phase space).

A ‘geometric’ numerical method for a differential equation is one which preserves
some property of the flow of the differential equation. Two key examples are symplectic
and volume-preserving integrators, which both provide excellent long-time stability
[3, 21]. Notice that in each case, a subgroup of the group of diffeomorphisms of
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M appears, namely the groups of symplectic and of volume-preserving maps. The
questions we address in this paper are

1. What other such classes of dynamical systems are there? Is there a classification
of dynamical systems?

2. For which of these can geometric integrators can be constructed?

3. Which other structures (e.g. symmetries and integrals) can be put into a com-
mon framework?

Such classifications are fundamental to the study of dynamics, because most generic
phenomena (e.g. stability, codimension of bifurcations, dimension of invariant tori,
Feigenbaum constants) depend on the class of systems considered. A two-level classi-
fication, first into semigroup/symmetric space/group, and then into their subspaces,
seems a promising way to proceed.

We find that many proposed geometric integrators can be classified according to
their diffeomorphism group. That is, one considers differential equations belonging to
a Lie algebra X of vector fields on a manifold M whose flows lie in a subgroup G of the
group of diffeomorphisms of M . Then a geometric integrator for the ODE ẋ = f(x),
x ∈M , f ∈ X, is a map ϕf ∈ G. We call it a G-integrator.

The group structure not only influences the possible dynamics, it is also used in
the construction of high-order integrators by composition [18, 38]. If ϕfi

∈ G for all
i, then ϕf1 ◦ϕf2 ◦ . . . ∈ G (usually f =

∑
fi); G itself now plays no role in the design

of particular composition methods.
The more general cases, of semigroups and symmetric spaces, we leave for the

future [27].
There is no general theory of diffeomorphism groups. Instead, one considers the

so-called Lie diffeomorphism groups, those that are the general solution of a set of
PDEs. For example, on R there are up to isomorphism only two such groups: the one
defined by ϕ′ = 0, with solution ϕ(x) = x+ a (G ∼= R has dimension 1), and the one
defined by ϕ′′ = 0, with solution ϕ(x) = ax+ b (G ∼= Aff (1) has dimension 2).

If we allow the solutions to be merely local diffeomorphisms, then there is one more
important case, that defined by ϕ′ϕ′′′− 3

2ϕ
′′2 = 0, with solution ϕ(x) = (ax+b)/(cx+

d) (G ∼= SL(2) has dimension 3.) This situation is typical, leading to the study of
Lie pseudogroups, sets of local diffeomorphisms closed under composition only when
the composition is defined. The flows of a Lie algebra of vector fields generally form
a pseudogroup, because for a fixed time the flow of a given vector field need not be
defined for all x ∈M .

Definition 1 [14, 35] Let M be a manifold and let G be a set of local diffeomorphisms
ϕ : Uϕ → Vϕ where Uϕ, Vϕ are open subsets of M . G is called a pseudogroup if the
following hold:

(i) The identity is in G.

(ii) If ϕ ∈ G, then ϕ|U ∈ G for any open U ⊂ Uϕ.

(iii) If ϕ ∈ G, then ϕ−1 : Vϕ → Uϕ is in G.

(iv) If ϕ and ψ are in G and Vϕ ⊂ Uψ, then ψ ◦ ϕ ∈ G.
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(v) If ϕ is a local diffeomorphism of M such that each point in the domain of ϕ has
a neighbourhood U such that ϕ|U ∈ G, then ϕ ∈ G.

A pseudogroup G is called a Lie pseudogroup if its elements ϕ are the general solution
of a set of PDEs in ϕ and its partial derivatives of some finite order.

The vector fields whose local flows are in G for sufficiently small times (the time de-
pending on the local domain) form a Lie algebra, which we denote X. Vice versa, a Lie
algebra of differentiable vector fields generates a pseudogroup. For any pseudogroup,
the subset consisting of its elements which are global diffeomorphisms forms a group.
For our applications, the distinction between local and global diffeomorphisms (i.e.,
between pseudogroups and groups of diffeomorphisms), is not crucial and will not be
emphasized.

If a Lie pseudogroup G is finite-dimensional, then it is a Lie group. The flow
of the ODE ẋ = f(x, t), f(., t) ∈ X ∀t, belongs to G, where in this case X is a
finite-dimensional Lie algebra. (For example, ẋ = A(t)x, where x ∈ Rn and A(t) ∈
so(n); the flow is orthogonal.) The group orbit through the initial condition x0 is
a homogeneous space; the construction of G-integrators for ODEs on homogeneous
spaces is an important part of geometric integration, for which an extensive and
beautiful theory has been developed [28]. (See also Section 6, remark 7).

When M is 1-dimensional, the only infinite-dimensional pseudogroup on M is
the set of all local diffeomorphisms. However, when M is 2-dimensional several
new infinite-dimensional Lie pseudogroups appear. We let M = R2 and write ϕ =
(u(x, y), v(x, y)).

Example 1 G = {ϕ : ux = vy, uy = −vx} is defined by the Cauchy-Riemann
equations, and may be identified with the complex locally analytic mappings, an
infinite-dimensional group. Because the defining PDEs are linear, this group can be
identified with its Lie algebra. Any differential equation ż = f(z), z ∈ C, f analytic,
has a flow in G; Euler’s method in the variable z is a G-integrator.

Example 2 G = {ϕ : uxvy − uyvx = det dϕ = 1}, the area-preserving mappings, is
also infinite-dimensional. Its Lie algebra is the divergence-free vector fields, elements
of which have the form ẋ = Hy(x, y), ẏ = −Hx(x, y). Symplectic integrators such as
the midpoint rule provide G-integrators.

Example 3 G = {ϕ : vx = 0} = {ϕ : ϕ = (u(x, y), v(y))} is infinite-dimensional.
G-integrators have earlier been called “closed under restriction to closed subsystems”
[2]. Note that all elements of ϕ leave the foliation y = const. invariant. Such Lie
pseudogroups are said to be not primitive and are not included in the standard clas-
sification. However, they do arise in geometric integration and we will consider them
in Section 5.

Definition 2 [14] A pseudogroup G is called transitive if for all x, y ∈M there exists
ϕ ∈ G such that ϕ(x) = y. A foliation of M is invariant under G if ϕ permutes the
leaves of the foliation for all ϕ ∈ G (i.e., if G maps leaves to leaves). A foliation of
M is fixed under G if ϕ maps each leaf to itself for all ϕ ∈ G. A pseudogroup G is
called primitive if it leaves no nontrivial foliation invariant.
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Note that a primitive Lie pseudogroup must be transitive, for otherwise its orbits
would be an invariant foliation. This is not true for pseudogroups of non-Lie type.

Example 4 G = {ϕ : ϕ(x + 1, y) = ϕ(x, y) + (1, 0)}, the mappings which have
a discrete translation symmetry (x, y) 7→ (x + 1, y). Given an ODE with such a
symmetry, we may want to construct a G-integrator for it, namely one that has the
same symmetry. This group is primitive and transitive. However, it cannot be defined
by PDEs because the constraint is not local; it is not a Lie pseudogroup. Another
example of a diffeomorphism group which is not a Lie pseudogroup was provided by
Lie himself: in {ϕ : u(x, y) = f(x), v(x, y) = f(y)}, one cannot eliminate f in favour
of the derivatives of u and v.

Example 5 The local diffeomorphisms with given invariant sets (for example, a given
list of fixed points and periodic orbits) form a pseudogroup which is not of Lie type,
although as in the previous example, we would like to construct G-integrators. Fixed-
point-preserving integrators are known [36].

Example 6 Let M = Rn, let G be a Lie subgroup of GL(n), and let G be the Lie
pseudogroup consisting of all local diffeomorphisms whose derivative lies in G for all
x ∈ M . It can be finite or infinite dimensional. For G = Sp(n), G is the infinite-
dimensional set of symplectic maps; but for G = SO(n), G is finite dimensional. For,
writing fi(x) ∂

∂xi
for an element of the Lie algebra of G, we have

fi,j + fj,i = 0 ⇒ fi,jk = fi,kj = −fk,ij = −fk,ji = fj,ki = fj,ik = −fi,jk = 0,

so the general solution is f(x) = Ax+ b for A ∈ so(n), b ∈ Rn.

Therefore, one should understand the relationship between the G and the dimen-
sion of G. It depends on the order of the Lie algebra g of G, essentially the highest
degree in the power series of a vector field in X which is not determined by the terms
of lower degree. The calculation above shows that so(n) has degree 1. It turns out
that g has infinite order if it contains an element of rank one; this simplifies the clas-
sification of the infinite-dimensional G a good deal. If the order of g is finite, or if it
is infinite but g has no element of rank one (complex matrix Lie algebras being the
main example) and M is compact, then G is a finite-dimensional Lie group [14].

Cartan developed a structure theory of Lie pseudogroups and gave a classifica-
tion of the complex primitive infinite-dimensional Lie pseudogroups, finding 6 classes
[5]. In the 1960s, gaps in his proof were discovered which were rectified by Singer
and Sternberg [33], allowing a complete proof by Guillemin, Quillen, and Sternberg
[11]. Their method allowed the classification of the real pseudogroups by Shnider [32].
Amazingly, on any real manifold M there are only 14 possible classes of such pseu-
dogroups; the assumptions of locality reduce everything to the consideration of groups
of formal power series. The key reference for diffeomorphism groups is Kobayashi [14],
although it predates the modern work on the classification. There is very little in print
since the 1960s that refers to the classification. It seems that since limited progress was
being made on the nontransitive case, interest in the general theory waned; research
has focussed instead on the analytic and group-theoretic properties of the classical
diffeomorphism groups [1, 29].
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We give the classification here briefly, and outline how each case (and three impor-
tant families of nonprimitive subgroups) arises in geometric integration. In each case
it is crucial to consider whether the structure is presented in its local canonical form,
the general form being usually much harder to preserve in an integrator. In Sections
3 and 4 we consider the conformal symplectic and conformal volume preserving Lie
pseudogroups in more detail, providing G-integrators and evidence of their usefulness
for these dissipative systems.

Our integrators are based on splitting and composition [18, 38]. In the simplest
instance of this technique one writes f =

∑
fi as a sum of vector fields (possible

here since f ∈ X, a linear space) with simple flows, and lets ϕτ =
∏
i exp(τfi),

a first-order G-integrator with time step τ . Then the order can be increased by
composition: ψτ = ϕτ/2ϕ

−1
−τ/2 is a second-order G-integrator and ψnατψ(1−2nα)τψ

n
ατ

(n ≥ 1, α = 1/(2n− (2n)1/3)) is a 4th-order G-integrator. Note that 1− 2nα < 0, so
the central stage involves integrating the vector fields fi backwards in time. The use
of negative time steps is unavoidable if one wants a composition of flows to have order
greater than 2, but it is not a problem here since exp(τfi) and exp(−τfi) both lie in
G. (It is a problem if the set of dynamical systems under consideration forms only
a semigroup and not a group.) Therefore the conformal symplectic and conformal
volume preserving systems provide rare examples of dissipative systems for which
high-order composition methods can be used.

2 The primitive infinite-dimensional pseudogroups

A primitive infinite-dimensional pseudogroup G on a real manifold M must be one of
the following.

1. G = Diff (M), the pseudogroup of all local diffeomorphisms of M . Almost any
one-step integrator lies in G, provided the time step is small enough and depends
smoothly on x.

2. G = Diff Sp(M), the local diffeomorphisms preserving a symplectic 2-form ω.
Its Lie algebra consists of the locally Hamiltonian vector fields, X such that
iXω is closed. G-integrators are called symplectic integrators. They have only
been generally constructed in two cases, when ω is the canonical symplectic
2-form on Rn and when M is a coadjoint orbit of a Lie algebra (Lie-Poisson
integrators [10]). To further classify these pseudogroups depends on classifying
the symplectic forms on M , which is an open problem.

3. G = Diff Vol(M), the local diffeomorphisms preserving a volume form µ on
M . Its Lie algebra consists of the divergence-free vector fields, X such that
divµX = 0. If M is compact, then all volume forms are equivalent up to a
constant [25]. Volume-preserving integrators have been considered both in the
canonical case M = Rn, µ = dx1 . . . dxn [9], and in the general case [30].

4. G = Diff Contact(M), the local diffeomorphisms preserving a contact 1-form
α up to a scalar function. Contact integrators for the canonical case α =
dx0 +

∑
x2idx2i+1 have been constructed by Feng [8]. A non-canonical ex-

ample is provided by a Hamiltonian vector field restricted to an energy surface;
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the theorem of Ge [10] on energy-symplectic integrators shows that we should
not expect to be able to construct G-integrators in this case.

5. G = Diff CSp(M), the local diffeomorphisms preserving a symplectic form ω up
to a constant multiple. That is, ϕ∗ω = cϕω, where the constant cϕ depends
on ϕ ∈ G. We study ODEs and integrators for this conformal symplectic pseu-
dogroup in Section 4.

6. G = Diff CVol(M), the local diffeomorphisms preserving a volume form µ up to
a constant multiple. That is, ϕ∗µ = cϕµ, where the constant cµ depends on
ϕ ∈ G. We study this conformal volume preserving case in Section 3.

7–12. When M also has a complex structure, there are the pseudogroups obtained
by considering the complex analytic local diffeomorphisms which also lie in
one of the groups 1–6. We call these, e.g., CDiff CVol(M), the complex an-
alytic local diffeomorphisms preserving a (real) volume form up to a (com-
plex) constant. (There are also two new cases, which are subgroups of the
conformal pseudogroups—see items 13 and 14.) If we require that the diffeo-
morphisms be globally defined, i.e., holomorphic, then these pseudogroups are
finite-dimensional Lie groups when M is compact or when M = C and have been
extensively studied [14]. On the other hand, CDiff (C2) is infinite-dimensional,
since it contains x′ = x, y′ = y + f(x), x, y ∈ C. Complex symplectic maps are
occasionally studied [37].

13. G = CDiff CSp′(M), the complex analytic local diffeomorphisms preserving a
real symplectic form up to a real multiple of eicϕz, where cϕ is a real constant
depending on ϕ ∈ G, and z is a complex constant independent of ϕ.

14. G = CDiff CVol′(M), the complex analytic local diffeomorphisms preserving a
real volume form up to a real multiple of eicϕz, where cϕ is a real constant
depending on ϕ ∈ G, and z is a complex constant independent of ϕ.

The theory of dynamical systems mostly studies Diff (general invertible dynam-
ics), CDiff (some complex dynamics), Diff Sp (Hamiltonian dynamics), and Diff Vol

(volume-preserving dynamics). In particular, conformal dynamics, which can be dis-
sipative, is not widely studied in its own right. (One reference is [26], which classifies
the quadratic conformal symplectic maps.) Nevertheless, these systems have some
interesting features that are not shared by nearby systems, whose preservation can
lead to superior integrator performance.

When M is a complex manifold, Diff (M) has only 6 primitive infinite-dimensional
subgroups, namely items 7–12 above. Cases 13 and 14 are excluded because the 2-
parameter subgroup {exp(tX) : t ∈ C} must be in G when M is complex; but when M
is a real manifold with a complex structure, we only need that {exp(tX) : t ∈ R} ⊂ G,
which it is in these cases.
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3 Conformal volume-preserving dynamics

Let µ be a volume element on a manifold M . We wish to study the vector fields X
whose local time-t flow lies in Diff CVol(M). That is,

exp(tX)∗µ = c(t)µ.

(See, e.g., [17] for the notation.) Differentiating with respect to time,

ċ(0)µ = LXµ := (divµX)µ = diXµ+ iXdµ = diXµ

Therefore, divµX = ċ(0) must be constant, and if ċ(0) 6= 0, µ must be exact, which
we now assume. (In particular, M cannot be compact.) Let µ = dα and let Xc be the
unique solution of iXc

µ = α. Then X = X0+cXc, where divµX0 = 0 and divµXc = 1.
We can write

iX0µ = dβ + [γ],

where β is an n− 2-form and [γ] ∈ Hn−1(M).
On Rn with the Euclidean volume form, this gives a representation of the constant-

divergence vector fields as, e.g.,

X = X0 +Xc

=
∑
i

( ∑
j

∂βij
∂xj

− c

n
xi

) ∂

∂xi
,

(1)

where βij(x) = −βji(x). This is a natural representation if we wish to construct
geometric integrators using splitting and composition, because the dissipative part
Xc can be integrated exactly. The divergence-free part can be integrated by any
volume-preserving integrator, e.g. by splitting. This approach has the advantage that
volume evolves at exactly the correct rate.

The group property directly confers a major advantage on G-integrators. Namely,
any composition of flows, even for negative time steps, lies in the group. This is
essential in attaining orders higher than 2. For contrast, for general dissipative systems
(e.g. those that contract volume [22] or have a Lyapunov function), this is not possible:
the dynamics lie only in a semigroup, which is left by negative time steps.

The two most famous conformal volume-preserving dynamical systems are the
Lorenz system in R3 and the Hénon map in R2. Their conformal property has often
been remarked on and used in studies (see, e.g., [16]). For example, it implies that
the sum of the Lyapunov exponents is equal to divµX, which can be used as a check
on a calculation or to avoid calculating all exponents. A system which contracts some
volume element cannot have a completely unstable fixed point (one with dimWu = n),
a topological invariant of this class of systems. However, the conformal property is not
believed to be a decisive factor in controlling the dynamics in the way that volume
preservation itself is. The volume contraction is so strong that all nearby systems
may have similar dynamics. Even if this is true, there can still be an advantage in
preserving the same structure preserved by the actual flow. Diff CVol(M) has infinite
codimension in Diff (M) and staying in it may confer some advantage.

To examine this question, we have calculated the Lyapunov exponents of the
Lorenz attractor using geometric and non-geometric integrators. The phase space
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is R3 with coordinates (x, y, z), and the system is (using a different splitting from Eq.
(1))  ẋ

ẏ
ż

 = Xc +X0

=

−σ σ 0
r −1 0
0 0 −b

 x
y
z

 +

 0
−xz
xy


Here X0 is in fact a Poisson system with Hamiltonian y2 + z2 and Casimir x; its flow
is a rotation in the y-z plane. Xc is linear and can be integrated exactly. We consider
the G-integrator

ϕτ = exp(τX0) exp(τXc)

where τ is the time step. This is only a first order method, but because it is smoothly
conjugate to the second-order leapfrog method,

exp(−1
2
τX0)ϕτ exp(

1
2
τX0) = exp(

1
2
τX0) exp(τXc) exp(

1
2
τX0),

it yields O(τ2) estimates of the Lyapunov exponents. (This feature alone strongly
recommends the geometric integrator.) We regard ϕτ : xk 7→ xk+1 as a given map
with known derivative Ak whose exponents are to be calculated. Note that detAk =
exp(τ(−σ − 1− b)) =: eτc, as for the exact flow. We use the discrete QR method [7]
for calculating the exponents [7]. Let Q0 ∈ SO(n) and

Qk+1Rk+1 = AkQk, k = 0, 1, 2, . . . ,

where the left hand side is the QR-factorization of the right hand side. Then the
Lyapunov exponents are given by

σi = lim
k→∞

1
k

k∑
j=1

ln(Rj)ii.

Since detQk = detQk+1 = 1, we have detRk+1 = detAk = eτc. Thus, at each time
step the expansion rates (Rk)ii have exactly the correct product, and the estimates of
the Lyapunov exponents on any finite time interval have exactly the correct sum c.

For a non-geometric method, we used the second-order Taylor series method [12].
Its discretization error was found to be roughly comparable to that of the geometric
leapfrog method on the attractor.

The errors due to the necessary finite-time cutoff are estimated by dividing the
samples into (e.g. 10) segments and computing the standard deviation of the estimates
on each segment. The sample interval can be chosen long enough to avoid short-time
correlations, but the complicated long-time nature of the time series make it difficult
to get more sophisticated error estimates. For the ‘classical’ Lorenz parameters we
can compare to the calculation of Sprott [34], which is accurate to 3 significant figures.
We also tested another set of parameters, those used in [7].

The results are shown in Table 3. Both methods give second order accurate expo-
nents, but the geometric method
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Table 1: Calculation of the Lyapunov exponents of the Lorenz attractor. The total
integration time is T , the time step is τ ; estimated finite-T errors in the final digits
are shown in parenthesis.

Method T τ σ1 σ2 σ3

(a) σ = 10, r = 28, b = 8/3 (classical case)

Sprott [34] 0.906 0 −14.572

G-integrator: stable for τ < 0.12, max. error ∼ 8τ2

105 0.01 0.9060(4) −1(1)× 10−5 −14.5726(4)
5000 0.05 0.9264(20) 7(50)× 10−5 −14.5930(20)

Taylor series integrator: stable for τ < 0.033, max. error ∼ 730τ2

5000 0.01 0.9083(17) 4(60)× 10−5 −14.4997(17)
(b) σ = 16, r = 40, b = 4

Dieci et al. [7] 1.36006 0.00570 −22.36576

G-integrator: stable for τ < 0.075, max. error ∼ 34τ2

5000 0.01 1.3742(30) 0.0020(20) −22.3763(30)
5000 1/30 1.4089(30) 0.0004(20) −22.4092(30)

Taylor series integrator: stable for τ < 0.017, max. error ∼ 2900τ2

5000 0.01 1.3799(20) 0.0001(4) −22.0816(20)

(i) takes 0.66 of the time per time step;

(ii) is stable for time steps up to 4 times larger; and

(iii) computes exponents with errors about 1% the size

compared to the Taylor series method. That is, its effective error constant is about
0.0066 that of the Taylor series method, or, it runs about 12 times faster for the same
error. The sampling errors are not reduced, so that long runs are still required for
accurate exponents.

This example does not fully test the structural stability of conformal volume pre-
serving dynamics. In particular, such systems in R3 have only one independent Lya-
punov exponent σ1; the others are σ2 = 0 and σ3 = c − σ1. However, the numerical
evidence is very strong and suggests that, e.g., the errors in the largest negative expo-
nent reported in [7] may be due to the integrator and not to the method of computing
the exponents themselves.

4 Conformal symplectic dynamics

One finds the vector fields as in the last section. Let ω be a symplectic 2-form on
a manifold M . We wish to study the vector fields X whose local time-t flow lies in
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Diff Sp(M). That is,
exp(tX)∗ω = c(t)ω.

Differentiating with respect to time,

ċ(0)ω = LXω = diXω + iXdω = diXω

Therefore, if ċ(0) 6= 0, ω = −dθ must be exact, which we now assume. (As before, M
cannot be compact.) If also H1(M) = 0, then all conformal Hamiltonian vector fields
can be defined by

iXω = dH + cθ

for some “Hamiltonian” function H and some constant c. (We have chosen the signs
here so that c > 0 corresponds to dissipation in simple mechanical systems.) On any
M we can write X = X0 + cXc, where X0 is locally Hamiltonian and Xc is a fixed
vector field satisfying iXcω = θ. Notice, however, that Ḣ = ciXθ need not be zero,
and in fact can change sign.

In the canonical case, M = R2n, θ = p dq, ω = dq ∧ dp, giving the conformal
Hamiltonian system

q̇ = Hp, ṗ = −Hq − cp. (2)

For H = 1
2‖p‖

2 + V (q), these are mechanical systems with linear dissipation. (The
conformal nature of such systems, and the symmetry of their Lyapunov exponents,
was studied in [6].) This is a special case of Rayleigh dissipation, for which ṗ =
−Hq − cR(q)p where R(q) specifies a Riemannian metric on the configuration space.
So to obtain a conformal system, this metric must be compatible with the symplectic
structure. We suspect that, since this form of dissipation is special mathematically
(forming a Lie pseudogroup), it must be special physically too.

For the general conformal Hamiltonian system (2), the energy obeys Ḣ = −cptHp

which can have any sign. The system can have a “conformal symplectic attractor”
analogous to the Lorenz attractor. For simple mechanical systems, however, H =
1
2‖p‖

2 + V (q), and Ḣ = −c‖p‖2 ≤ 0. The energy becomes a Lyapunov function and
all orbits tend to fixed points.

The eigenvalues of the Jacobian of X (and hence the Lyapunov exponents of X)
occur in pairs with sum −c; the spectrum is constrained to the same degree as that of
Hamiltonian systems. Consider an invariant set (fixed point, periodic orbit etc.) with
stable manifold W s and unstable manifold Wu. Their dimensions obey

dimW s

{≤ dimWu for c > 0,
≥ dimWu for c < 0,
= dimWu for c = 0.

(3)

Since these dimensions are invariant under homeomorphisms, the inequality (3) is a
topological invariant. A system in which one of these three conditions did not hold
for all invariant manifolds could not be conformal symplectic. Conformal symplectic
systems also have characteristic properties in the presence of symmetries (see Section
4.2). We do not have a complete characterisation of their dynamics, however; in
particular, it is not clear whether the flow on a strange attractor is influenced by the
symplectic structure beyond merely having its dimension bounded.

As before, geometric integrators can be constructed by splitting: Xc can be inte-
grated exactly, and a symplectic integrator applied to X0. Alternatively, since Xc is
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linear, one can split off the entire linear part of X and integrate it exactly. As with
conformal volume preserving systems, the order can be increased by composition.

Interestingly, the symplectic Runge-Kutta methods are not conformal symplectic,
as the following example illustrates.

Example 7 Consider a linear canonical 4-dimensional system with H = 1
2 (q21 + p2

1)
and let the map ϕ be the midpoint rule with time step 2τ . The map ϕ is linear and
one can calculate

ϕ∗ω(
∂

∂q1
,
∂

∂p1
) =

1 + cτ + τ2

1− cτ + τ2

and
ϕ∗ω(

∂

∂q2
,
∂

∂p2
) =

1
1− c2τ2

.

The integrator ϕ is conformal symplectic iff these two are equal for all τ , which is true
iff c = 0.

4.1 Calculation of Lyapunov exponents

For a numerical example we consider two linearly repelling Duffing oscillators,

q̇i = pi

ṗi = qi − q3i + βi(q1 − q2) + γ cos t− cpi

}
i = 1, 2

where β1 = −β2 := β > 0. The time-2π flow of the system is a conformal symplectic
map. For small values of β the attractor is only slightly perturbed from the attractor
of the standard β = 0 Duffing oscillator. As β increases an interesting new state
appears in which one oscillator traces out a motion close to the β = 0 attractor,
while keeping the second at arms length. This state has a single positive Lyapunov
exponent, suggesting that the second oscillator is slaved to the first. (Although, from
the symmetry of the problem, the two can change places.) We took γ = 0.5, β = 0.1,
c = 0.25 and calculated the Lyapunov exponents of this state using geometric and
nongeometric integrators.

As before, the geometric integrator is the standard composition exp(τA) exp(τB),
where now A contains all the linear terms (including the damping), and B contains
only the nonlinear potential, with frozen time. It leads to second order estimates of
the exponents. The nongeometric integrator is the second order Taylor series method,
which has truncation errors about the same size as the geometric leapfrog method.
We expect that other standard integrators give similar results.

We digress to discuss the calculation of Lyapunov exponents σi for (conformal)
symplectic maps. Recall that these should have constant pairwise sums, and since
the QR-algorithm calculates them in descending order, we expect σi + σn+1−i = −c.
Consider the first step Q1R1 = A1Q0. Here, A1 is (conformal) symplectic, but there
is no reason for R1 to be, and hence the exponents need not sum correctly. Now
the QR factorization corresponds to the Iwasawa decomposition of both of the Lie
groups GL(n) and SL(n), and hence is appropriate for both general and (conformal)
volume preserving systems, but not of CSp(n) (the conformal symplectic matrices).
The factors Q1 and R1 are not in CSp(n). One should replace QR by the appropriate
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Iwasawa factorization. For CSp(n), this has Q ∈ OSp(n), the orthosymplectic group.
This was realized by the numerical linear algebra community long ago, who developed
the symplectic QR method for finding the eigenvalues of symplectic matrices [4]. For
the pure symplectic case, a corresponding symplectic Lyapunov exponent algorithm
was developed in [15].

However, we have discovered an extremely convenient shortcut which allows one
to still use the ordinary QR factorization. Namely, if we take

Q0 =
(
I 0
0 I∗

)
, I∗ij = δi,n+1−i

then one can show that the factorsQ1 and R1 are related to the (conformal) symplectic
factors of the Iwasawa decomposition and thatR1 (conformally) preserves the modified
symplectic structureQ∗0ω. (Not surprisingly, in this structure qi is conjugate to pn+1−i,
which is consistent with QR producing exponents in descending order.) This remains
true for all k. Thus, merely by choosing Q0 appropriately, the computed exponents
have exactly the correct symmetry for all time steps k. In practice, the sums σi +
σn+1−i remain constant and equal to −c to within 10−15 for all k.

Finally, we can note that since the first n/2 columns of Q0 coincide with those of
the identity, the first n/2 exponents will be identical to those computed with Q0 = I.
Thus, it suffices to compute the first n/2 using the standard QR method, since we
know they are the first half of a “correct” (conformal) symplectic set.

The numerical results are less dramatic than for the Lorenz attractor, but still
significant. The geometric method takes 0.57 of the CPU time per time step and
captures the attractor with 14 time steps per period (2π), whereas the nongeometric
method requires 20. (For larger time steps, spurious stable periodic orbits are created,
while for still larger time steps, the methods are unstable.) The Lyapunov exponents
are σ1 = 0.1740, σ2 = −0.1011, σ3 = −0.1489, and σ4 = −0.4240, with a sampling
error of about 8 × 10−4. (Note that they sum in pairs to −0.25 = −c.) These are
computed by the geometric method with a maximum error of 0.0063, and by the
nongeometric method with a maximum error of 0.0423, at a time step of 2π/24.

4.2 Symmetries

Let the Lie group G act on M . As we discussed above, a G-invariant vector field X
will in general merely leave the foliation defined by the group orbits invariant, but in
the Hamiltonian case there is another foliation, the level sets of the momentum map,
which is actually fixed by X. We now show that when X is conformal Hamiltonian
and G acts by cotangent lifts, this second foliation is still invariant, although no longer
fixed. This extra structure is not shared by general dissipative systems.

We use notation and details of the momentum map which may be found in [17].
Further results, and a generalization to conformal Poisson systems, can be found in
[19].

Proposition 1 Let M = T ∗Q be a cotangent bundle with its canonical symplectic
1-form θ and 2-form ω = −dθ. Let the Lie group G act by cotangent lifts Φg (g ∈ G)
on T ∗Q, and let H = H ◦Φg be G-invariant. Let Jξ : T ∗Q→ R be the components of
the momentum map for ξ ∈ g, the Lie algebra of G. Then the conformal Hamiltonian



LIE PSEUDOGROUPS AND GEOMETRIC INTEGRATION 13

vector field X defined by iXω = dH + cθ is G-invariant, and Jξ obeys the differential
equation J̇ξ = −cJξ for all ξ ∈ g.

Proof Using that the cotangent lift symmetry Φ∗g preserves θ, we have

Φ∗giXω = iΦ∗
gX

Φ∗gω = iΦ∗
gX
ω = Φ∗g(dH + cθ) = dH + cθ = iXω

and by nondegeneracy of ω we have Φ∗gX = X, showing that X is invariant.
The components Jξ of the momentum map are defined by iξx

ω = dJξ and obey
Jξ = iξxθ for cotangent lifts. (Here ξx is the vector field which generates the symme-
try). Then the momentum equation is

d

dt
Jξ ◦ exp(tX) = X(Jξ)

= iXdJξ

= iX iξx
ω

= −iξx
iXω

= −iξx
(dH + cθ)

= 0− cJξ

•

The momentum obeys Jξ(t) = e−ctJξ(0), which allows a reduction to a smaller,
nonautonomous system. Note that the proof relies crucially on Φg preserving θ, which
is only true for cotangent lift symmetries.

Example 8 Consider a particle in R3, with rotationally invariant Hamiltonian H =
1
2‖p‖

2 + V ( 1
2‖q‖

2). The equations of motion are

q̇ = p

ṗ = −V ′(1
2
‖q‖2)q − cp

and one can check that the angular momentum J = q × p indeed obeys J̇ = −cJ .

A similar result, and hence reduction, holds true in the discrete case, i.e., for a
symmetric G-integrator. In practice it is quite easy to preserve cotangent lift symme-
tries in the integrator, e.g., p–q splitting does this. The next proposition shows that
such an integrator usually gets the values of the momentum exactly right.

Proposition 2 Let the conformal symplectic map ϕ be equivariant with respect to
the cotangent lift action Φg and obey ϕ∗ω = Cω. Then the foliations defined by the
momentum map are invariant under ϕ. The momenta obey Jξ ◦ ϕ = CJξ + d, where
d is a constant.

Proof We are given ϕ ◦ Φg = Φg ◦ ϕ, which implies ϕ∗ξx = ξx. With notation as in
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the preceding proposition, we compute

Lξx
ϕ∗θ = diξx

(ϕ∗θ) + iξx
d(ϕ∗θ)

= dϕ∗iξx
θ − iξx

ϕ∗ω

= dϕ∗Jξ − iξx
Cω

= d(ϕ∗Jξ − CJξ)
= Lϕ∗ξx

ϕ∗θ

= ϕ∗Lξx
θ

= ϕ∗0
= 0.

Therefore,
ϕ∗Jξ = Jξ ◦ ϕ = CJξ + d.

•

The constant d is usually zero. For example, if ϕ is an integrator preserving the
fixed points of the vector field X, then Jξ = 0 at any fixed points (since J̇ξ = −cJξ),
implying d = 0. If ϕ is constructed by splitting off the dissipative part of X and
solving it exactly, then C = exp(−τc) and the integrator achieves exactly the correct
evolution of the momentum. In any event, if d 6= 0 then there is a nearby function
J̃ξ = Jξ + d/C which does obey J̃ξ ◦ ϕ = CJ̃ξ.

Another way to view conformal Hamiltonian systems, at least in the canonical
case (2), is to make a time-dependent change of variables. Eq. (2) is Hamiltonian in
the variables (q, p̃) where p̃ = ectp with respect to the nonautonomous Hamiltonian
H̃(q, p̃) = ectH(q, e−ctp̃).

5 Some nonprimitive pseudogroups

The largest nonprimitive Lie pseudogroup is one that just leaves a foliation invariant.
If the codimension-k foliation is given by the level sets of the function x : M → Rk,
then we can take local coordinates x1, . . . , xk, y1, . . . , yn−k and write the diffeomor-
phisms in the form

x 7→ f(x),
y 7→ g(x, y).

(4)

Each leaf is given by Lx = {x = const}. The foliate systems are precisely those that
can be reduced to the space of leaves. This is a case when it is much easier to construct
a G-integrator when the structure is in its local canonical form! This pseudogroup
has a large variety of subpseudogroups which have not been classified. We consider
some examples.

Example 9 The Lie pseudogroup

{x 7→ f(x), y 7→ g(y)} ∪ {x 7→ f(y), y 7→ g(x)}

shows that G need not be connected. In fact, if M is orientable then Diff (M) itself
is not connected. Its identity component consists of the orientation-preserving maps,
but this is not of Lie type.



LIE PSEUDOGROUPS AND GEOMETRIC INTEGRATION 15

G can be restricted to the space of leaves of the foliation (giving the map x 7→ f(x)
in Eq. (4)). This restriction may be one of the primitive Lie pseudogroups or may
itself preserve a foliation. Continuing in this way, we get a recursive decomposition of
G. One limiting case is the pseudogroup on Rn,

xi 7→ fi(x1, . . . , xi), i = 1, . . . , n,

the (local) diffeomorphisms whose derivative lies in the Lie algebra of lower triangular
matrices. However, descending to sub-foliations is only part of the story, because
the maps on the leaves (y 7→ g(x, y) in Eq. 4) may have structure of their own.
Part of it can be studied by freezing x (the leaf) and looking at the structure of the
diffeomorphisms ϕx : Lx → Lf(x).

Example 10 The pseudogroup of diffeomorphisms of the form

x 7→ f(x), y 7→ g(x, y), z 7→ h(x, y)z

leaves the foliation x = const. invariant. Freezing x, the leaf maps themselves leave
the second foliation (x, y) = const. invariant. The leaf maps on the second foliation,
namely z 7→ h(x, y)z, have additional structure: freezing (x, y), they are linear in z,
i.e., they belong to the 1-dimensional Lie pseudogroup GL(1).

Apart from the maps on the space of leaves, and the maps on the leaves themselves,
the maps on the whole space can have further structure, describing how the maps on
the leaves vary from leaf to leaf.

Example 11 The pseudogroup of diffeomorphisms of the form

x 7→ f(x), y 7→ g(y)

leaves the foliation x = const. invariant, while the maps on the leaves x = const.,
namely y 7→ g(y), are independent of the leaf. In the pseudogroup of diffeomorphisms
of the form

x 7→ f(x), y 7→ ∂f

∂x
(x)y,

not only are the maps on the leaves linear, they are related to the maps on the space
of leaves.

Although there is no complete classification, identifying any pseudogroup G to
which a flow belongs does provide important information. The nonprimitive Lie pseu-
dogroups can be organised by

(i) the primitive Lie pseudogroup of which G is a subset;

(ii) the Lie pseudogroup of G restricted to the space of leaves;

(iii) the Lie pseudogroup of G restricted to each leaf; and

(iv) their structure transverse to the leaves.

We describe three classes of nonprimitive Lie pseudogroups which arise frequently in
dynamical systems.
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1. Systems leaving a foliation invariant.

2. Systems with a continuous symmetry. Let the Lie group G act on M . Then the
G-equivariant maps leave the foliation defined by the group orbits of G invariant.
The maps between the leaves are called the reduced dynamics, while the maps
on the leaves are called the reconstruction. If the action is free then each leaf
is isomorphic to G and the maps on the leaves are G-equivariant. At the Lie
algebra level, we have ODEs of the form

ẋ = f(x), x ∈M/G (the reduced dynamics)
ẏ = g(x)y, y ∈ G, g ∈ g (the reconstruction equations)

(5)

If we can integrate on M/G, the reduced dynamics can be integrated by any
appropriate G-integrator, and the reconstruction equations by a Lie group inte-
grator.

3. Systems leaving a foliation fixed, i.e. systems with integrals. (The functions
whose level sets define the foliation are first integrals.) G-integrators, those
that preserve a given set of first integrals, are studied in [23, 31]. Another
example is provided by Poisson systems, whose flow fixes the symplectic leaves
and is symplectic on them. G-integrators are only known in the special cases of
constant or Lie-Poisson structure.

Hamiltonian systems with symmetry provide examples of all of these cases. The
symmetry alone lets one reduce to equations of the form (5). The symplectic structure
then guarantees that the reduced dynamics are Poisson, and have first integrals given
by the Casimirs of the reduced Poisson bracket and by the energy. The symplectic
structure also provides the reconstruction equations with further integrals. Alterna-
tively, one can introduce the momentum map J : M → g∗ and split the system into
three parts,

J̇ = 0 (the first integrals)

ẋ = f(J, x), x ∈ J−1(µ)/Gµ (the reduced, Hamiltonian dynamics)
ẏ = g(J, x)y, y ∈ Gµ, g ∈ gµ (the reconstruction equations)

where Gµ is the isotropy subgroup of µ ∈M and gµ its Lie algebra.
We know no way of telling when a given system preserves some (unknown) foliation.

However, the systems foliate with respect to a Lie group action do have an elegant
structure, which is used to construct G-integrators in [20].

Once the pseudogroup structure of equations such as these is known, one can
determine the best approach for constructing G-integrators in each case. This is not
necessarily by carrying out the reductions analytically: in [24], for example, integrators
for the case M = T ∗G are applied to the simpler, unreduced equations, which do
however stay in the appropriate pseudogroup.

Finally, all of the above Lie pseudogroups have infinite-dimensional subpseudogroups
which are not of Lie type, i.e. are not defined by PDEs. For, let G be a Lie pseu-
dogroup, G a discrete group acting on M , and consider the G-equivariant maps,
GG := {ϕ ∈ G : ϕ ◦ g = g ◦ ϕ ∀g ∈ G}. GG is primitive if G is. It can be transitive
unless there are points in M fixed under all of G, for the set of such points must be
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invariant under GG. One can consider classifying the pseudogroups of G-equivariant
diffeomorphisms on M by passing to the quotient M/G, an orbifold, although this is
not in general a manifold so the preceding classification does not apply directly.

6 Remarks

Let us review the kinds of dynamics—i.e., the pseudogroups of local diffeomorphisms—
for which geometric integrators are known. In all cases, this depends on whether the
manifold is simple (e.g. Rn) and the geometric structure (e.g. symplectic structure,
foliation, etc.) is presented in its local canonical form. If it is not, then in most cases
geometric integrators are not known. For example, it is not known how to preserve
an arbitrary symplectic structure, or canonical symplectic structure together with an
arbitrary symmetry.

On the other hand, G-integrators are known for each of the 14 primitive Lie pseu-
dogroups listed in Section 2 when presented in their canonical form. In Sections 3
and 4 we have given G-integrators for G = Diff CVol and G = Diff CSp, respectively,
based on splitting off the dissipative part; a similar method works for cases 13 and 14,
CDiff CVol′ and CDiff CSp′ . G-integrators for the complex cases are provided simply
by expressing the integrators in complex variables.

Developing geometric integrators for the nonprimitive pseudogroups, on more gen-
eral manifolds, with possibly non-canonical structures, remains a problem for the fu-
ture. Even the dynamics of systems in many of these groups has not yet begun to be
studied.

We close with some further remarks.

1. We expect the use of geometric integrators for the conformal cases to be partic-
ularly useful when the dissipation rate c is small; in particular, for studying the
limit c→ 0.

2. If the dissipation rate depends on time, the flow still lies in the conformal pseu-
dogroup. If the dissipation rate is periodic with mean zero, then the one-period
map is symplectic or volume preserving, but may be best computed with a
conformal geometric integrator.

3. What is the difference between the dynamics of systems in Diff CVol (resp.
Diff CSp) and nearby systems? One topological invariant of conformal volume
preserving systems is that they cannot contain both sources and sinks, for a
source implies that the conformal constant c is positive, while a sink implies
that it is negative.

4. A theory of conformal symplectic reduction is developed in [19], the system
dropping to a Poisson manifold whose leaves are permuted by the reduced flow.
The local flows of these conformal Poisson systems form a natural example of a
nonprimitive pseudogroup.

5. Instead of continuous groups (both in the finite-dimensional case and in the
infinite-dimensional case), one can study symmetric spaces, sets of diffeomor-
phisms closed under the symmetric product ϕψ−1ϕ, systems with a reversing
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symmetry being the main example. Their classification is an extension of the
classification of Lie groups [27].

6. What are the applications of the complex pseudogroups?

7. Integrators for systems on Lie groups and homogeneous spaces provide G-integ-
rators in two different cases, in both of which M is a homogeneous space: (i) in
the nonlinear case, for G = Diff (M) [28]; and (ii) in the nonautonomous linear
case, for G = G, a finite-dimensional Lie group [13]. The latter is particularly
important from the point of view of reproducing qualitatively correct dynamics,
since G is so small. It remains to be seen whether these integrators can be
extended to other infinite-dimensional pseudogroups.
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