
6 - 1 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

6. Computational Complexity

• Computational models

• Turing Machines

• Time complexity

• Non-determinism, witnesses, and short proofs.

• Complexity classes: P, NP, coNP

• Polynomial-time reductions

• NP-hardness, NP-completeness

• Relativization, quantifiers, and the polynomial hierarchy

• The role of relaxations

6 - 2 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Computation

Want to study and understand

• The power and limitations of computational methods. This requires a
formalization of the notion of algorithm.

• What can and cannot be computed, and the resources needed to do
so.

• Why polynomial problems do not have easy solutions in general.

In our context, understand relaxations from a complexity perspective.

6 - 3 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Computational models

• Finite automata

• Pushdown automata

• Turing machines

• Church’s λ-calculus

• Any modern computer programming language

Exact choice of model is not crucial.
Last three have similar computational power.

The Church-Turing thesis:

• The intuitive notion of an algorithm is captured by a Turing machine.

• Any conceivable computational process can be performed in a Turing
machine.

6 - 4 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Turing machines

An infinite tape, with a head that moves forwards and backwards.

M

1 0000 01 11

A finite list of rules, that describes the behavior.

Machine reads symbol in tape, moves forward or backwards, and optionally
writes.

• A very idealized abstraction, of purely theoretical use

• This was before computers even existed! (1936)

6 - 5 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

A formal notion of computation allows for results on:

• Computability: what can be decided algorithmically?

• A qualitative viewpoint

• Existence of non-algorithmically decidable questions.

• Undecidability of the Turing machine halting problem.

• Application: quadratic integer programming is undecidable.

• Connections with Gödel’s incompleteness theorem.

• Complexity: what resources (time, memory, communication) are needed?

• Emphasis on quantitative properties

• Can we solve the problem efficiently?

• Much more recent theory (started in 1970s)

6 - 6 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Decision problems

Complexity classes are defined for decision problems, i.e., those with a
yes/no answer.

Examples: Is this graph connected?
Is this matrix singular?
Is this polynomial nonnegative?
Is this proposition satisfiable?
Is this optimization problem feasible?

Given a problem, is the answer “Yes” or “No”?

A language is the set of inputs with the desired property.

So we can equivalent ask “Is this instance in the language?”
We use “problem” informally, to denote “language”.

6 - 7 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Time complexity

We are interested in the number of operations, as a function of the length
of the input.

Standard O(·) notation: f (n) is O(g(n)) if there exists a n0 and c > 0
such that

n ≥ n0⇒ f (n) ≤ cg(n)

.

Example:
(n+5

3

)
is O(n3).

For instance, we can say: a Turing machine requires O(n2) units of time,
where n is the length of the input.

6 - 8 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complexity classes: P

P is the class of problems that can be decided in polynomial time, i.e.,
those for which the running time is O(nk), for k ∈ N.

Some examples in P:

• Connectedness: Is the graph G connected?

• Nonsingularity: Is the rational matrix M singular?

• Positive semidefiniteness: Is this rational matrix PSD?

• Stability: Is this rational matrix Hurwitz stable?

• Controllability: Is this system controllable?

For all of these, there are algorithms requiring only a polynomial number
of steps.

6 - 9 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complexity classes: P

Unambiguous and correct decision (yes or no), in polynomial time.

“Efficiently” or “quickly” are synonyms for “in polynomial time”.

If a language is in P, so is its complement.

Ex: If I can efficiently decide “Is this matrix singular?”, then I can also
solve efficiently “Is this matrix nonsingular?”

Formally, we have that P=coP.

6 - 10 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complexity classes: NP

NP stands for nondeterministic polynomial time. What does this mean?

Given a “hint”, “guess”, or “certificate”, can verify in polynomial time.

Examples:

• Is this logical proposition satisfiable?
If you give me the assignment, it’s easy.

• Compositeness: Is this number composite (not prime)?
If you give me the factors, I can multiply them.

• Does this graph have a Hamiltonian path?
Given the path, I can easily verify if it is Hamiltonian.

• Is this matrix singular?
Give me a vector in the kernel, then I can quickly check.

A “Yes” answer is easy to verify.
Can use the certificate as a proof, to quickly convince someone else.

6 - 11 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complexity classes: NP

NP is that class of languages that:

• Have polynomial-time verifiers

• Can be decided by nondeterministic polynomial time Turing machines

“If you help me, I can efficiently check whether it’s correct”

Verifying is easy. Deciding may be easy, or hard.

Notice that, in particular, P ⊆ NP

Unlike P, it is not known whether NP is closed under complement.

6 - 12 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complementation

Consider a logical proposition Q = ¬((p ∧ q)⇒ (q ∧ ¬r)).

For a proposition in n variables,
the truth table has 2n rows.

p q r p ∧ q q ∧ ¬r Q
T T T T F T
T T F T T F
T F T F F F
T F F F F F
F T T F F F
F T F F T F
F F T F F F
F F F F F F

To verify that the proposition is satisfiable, it is enough to look at one row.
If you tell me which row, I can do that quickly.

However, if it is unsatisfiable, no easy shortcuts in general.
For instance, need to look at all 2n rows.

6 - 13 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Complexity classes: coNP

coNP is the set of

• languages for which non-membership can be efficiently verified, with
a guess.

• problems that have polynomial-time refutations

• problems for which a “No” answer is easy to verify

• languages whose complement is in NP

Examples:

• Tautologies (propositions that are true for every possible assignment).

• Graphs without Hamiltonian circuits

• Nonnegative functions in [0, 1]n.

6 - 14 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Relationships

Clearly, P ⊆ NP, and P ⊆ coNP. Therefore:

NP
co-NP

P

Unless they’re all the same! In fact...

6 - 15 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

The big questions

There is a lot that we don’t know:

• Is P=NP?

• Does the existence of a short proof guarantee that we can find it
efficiently?

• Is NP=coNP?

• Do all tautologies have short proofs?

• Is it equally easy to certify “yes” and “no” answers?

Have been open for more than 30 years.
They’re certainly the most important open questions in theoretical com-
puter science, and perhaps in mathematics.

A 1M USD reward from the Clay Institute for a solution.

6 - 16 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Polynomial-time reductions

An important concept: the reducibility of a problem to another.

We transform a problem (language) into another one, not changing signif-
icantly the running time.

For instance, we can reduce MAXCUT to a QCQP, efficiently.

If problem A is reducible to B, we write

A ¹P B

The reduction implies that B is “as hard” as A. Since we could use an
algorithm for problem B to solve A, it cannot be easier.

6 - 17 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

NP-hardness

A problem B is NP-hard if every problem in NP can be reduced to B.

A ∈ NP =⇒ A ¹P B

NP-hard problems are as hard as any problem in NP

• The traveling salesperson problem

• Does this graph have a Hamiltonian path?

• Boolean quadratic optimization

• Satisfiability

• Is the structured singular value µ less than 1?

NP-hard problems are not necessarily in NP.

6 - 18 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

NP-completeness

NP-complete = NP ∩ NP-hard

A problem is NP-complete if

• it is in NP

• every other problem in NP is polynomial-time reducible to it.

A nontrivial fact: NP-complete problems exist.

• Satisfiability is NP-complete (Cook-Levin).

• The proof, essentially writing down the equations for a Turing machine.

NP-complete problems are the hardest problems in NP.

6 - 19 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Remarks

The updated picture:

NP
co-NP

P

NPCCo-NPC

A statement “Problem X is in NP” means that it is easy in some sense.

Problems can be much harder than NP-complete. No efficient way of
verifying either positive or negative solutions!

6 - 20 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

The famous cartoon

From Garey & Johnson (1979).

6 - 21 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Polynomial feasibility is NP-hard

Sketch: 0-1 linear programming is NP-hard, by reduction from 3SAT.

Using the encoding T ↔ 1, F ↔ 0, we have:

qi ∨ qj ∨ qk is true ⇐⇒ xi + xj + xk ≥ 1.

In other words, we encode logic with arithmetic.

0-1 LP is clearly a special case of polynomial feasibility, since we can write
the 0-1 constraints as x2

i − 1 = 0.

All the required transformations are polynomial time.

So the following holds:

A ∈ NP =⇒ A ¹P 3SAT ¹P 01LP ¹P FEAS

which implies that deciding polynomial feasibility is NP-hard.

6 - 22 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Relativization and the polynomial time hierarchy

What happens if we allow “subroutines” (oracles)?

For instance, if deciding NP-complete problems is “free”?
Define Σ0P = Π0P = P, and recursively:

Σk+1P = NP with ΣkP oracle,

Πk+1P = coNP with ΣkP oracle

We have Σ1P = NP, Π1P = coNP. Higher
classes harder.

1
Õ

1
å

2
å

2
å

2
Õ

3
Õ

3
å

......

2
Õ

3
Õ

3
å

......

NPCoNP

0 0
Õ = å

P

There are problems that are complete for PH: alternating quantifiers.

Ex: (∃x)(∀y)(∃z)Q(x, y, z) is in Σ3P .

These appear in games, minimax, robust control, etc.

Hard to certify solutions, either in the positive or the negative.

If NP=coNP then the polynomial time hierarchy collapses.

6 - 23 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Caveats

Complexity theory admits several variations, according to the specific choices:

Weak vs. strong Computational model Class

Exact problem
ε-approximation

Turing
Arithmetic

P
NP, coNP

Σk, Πk

For instance, for linear programming feasibility:

• Exact problem, rational data and Turing model, it is in P.

• Exact problem, real arithmetic model, complexity is open.

• Polynomial time in log 1
ε for approximate solutions.

6 - 24 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Assessing difficulty

Why do we think of some optimization problems as easy, and others as
hard?

“Good” optimization problems:

• LP is polynomial in the Turing model

• Weak LP/SDP are polynomial in the arithmetic real model

“Bad” problems: general polynomial optimization

• NP-hard in the Turing model

• NP-complete in real arithmetic model

Regardless of some important open questions, this classification agrees well
with practical experience.

6 - 25 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Some positive thoughts

• For practical-sized instances, we may be able to solve problems in an
acceptable time.

• Approximate solutions may be easy
For instance, naive coin flipping gives a 1

2 algorithm for MAXCUT.

• But, NP-complete problems differ wildly in approximation properties.
MAXCUT is quite nice, CLIQUE cannot be approximated within any
constant factor.

• Problems may be easy on average, for a given probability distribution.
In general, results depend critically on the chosen ensemble

• Classes of instances may admit short proofs.
The main idea behind relaxations.

6 - 26 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

Relaxations and short proofs

In general, problems in coNP don’t have short proofs (unless NP=coNP).

For a given problem, some instances are easier than others. For any con-
crete instance, short proofs may exist, and be easy to find.

Example:

• We do not know how to decide or certify efficiently that a graph does
not contain a Hamiltonian cycle. If the graph has a bridge, then it is
easy.

• Proving µ(M) < 1 is hard. But, if the SDP upper bound satisfies
µ̄(M) < 1, we are done.

If NP6=coNP, there exist true propositions for which we cannot concisely
explain why they’re true!

6 - 27 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

A complexity zoo

Different computational models give rise to different complexity classes:

• Working space (memory): PSPACE, EXPSPACE, . . .

• Parallel: NC, PT/WK, . . .

• Randomized versions: PP, BPP, RP, ZPP, . . .

• Real and complex computation: NPR, NPC,. . .

• Approximation and optimization: APX, PTAS, . . .

• Quantum: BQP, . . .

• Enumeration: #P, . . .

• Interactive: IP, MIP, AM, PCP, . . .

